Enriching Morphologically Poor Languages for Statistical Machine Translation

نویسندگان

  • Eleftherios Avramidis
  • Philipp Koehn
چکیده

We address the problem of translating from morphologically poor to morphologically rich languages by adding per-word linguistic information to the source language. We use the syntax of the source sentence to extract information for noun cases and verb persons and annotate the corresponding words accordingly. In experiments, we show improved performance for translating from English into Greek and Czech. For English–Greek, we reduce the error on the verb conjugation from 19% to 5.4% and noun case agreement from 9% to 6%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology Generation for Statistical Machine Translation

When translating into morphologically rich languages, Statistical MT approaches face the problem of data sparsity. The severity of the sparseness problem will be high when the corpus size of morphologically richer language is less. Even though we can use factored models to correctly generate morphological forms of words, the problem of data sparseness limits their performance. In this paper, we...

متن کامل

Improving Translation to Morphologically Rich Languages (Améliorer la traduction des langages morphologiquement riches) [in French]

Améliorer la traduction des langages morphologiquement riches While statistical techniques for machine translation have made significant progress in the last 20 years, results for translating to morphologically rich languages are still mixed versus previous generation rule-based systems. Current research in statistical techniques for translating to morphologically rich languages varies greatly ...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

Rich Morphology Generation Using Statistical Machine Translation

We present an approach for generation of morphologically rich languages using statistical machine translation. Given a sequence of lemmas and any subset of morphological features, we produce the inflected word forms. Testing on Arabic, a morphologically rich language, our models can reach 92.1% accuracy starting only with lemmas, and 98.9% accuracy if all the gold features are provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008